Today:

1) Volcanic Processes at Earth's Surface (Extrusive)

Next Meeting:

- 1) Wrap-up Volcanoes/Igneous Rocks
- 2) Pompeii Movie (58 min)

Chiatin Volcanic Eruption (2008), Chile

Volcanic Processes at the Surface

Extrusive Igneous Rocks

All Volcanoes are not alike

Mt. Fuji, Japan

Michoacan, Mexico

Mauna Loa, HI

Extrusive Volcanic Rocks

3

The Role of Volatiles and Bubbles in a Volcanic Eruption

The Role of Volatiles and Bubbles in a Volcanic Eruption

Bubbles in Honey

Bubbles in Coke

Andesitic Eruption

Basaltic Eruption

Pyroclastic Material or Tephra

Ash

Cinders

Bombs

Layered Air Fall Tuff

Tuff- The rock name given to a deposit composed of pyroclastic material. May be composed of ash, cinders, and bombs or all of the above.

Crater Lake Area, OR

Effusive Deposits

Lava Flows- May be composed of Basaltic, Andesitic or Rhyolitic

Why different magma's behave differently and make different volcanoes.

The 3 V's of Volcanoes

<u>Viscosity</u> - The resistance of a material to flow. "Stickiness"

<u>Volatiles</u> - Elements or compounds such as H2O, CO2, and SO2 that evaporate easily and can exist as a gas at the Earths surface. The most important affect of Volatiles on magma is the formation of bubbles.

Volume - How much material is erupted.

- 1) Stratovolcano
- 2) Shield Volcano
- 3) Scoria / Cinder Cone
- 4) Continental Caldera
- 5) Flood Basalt
- 6) Lava Dome

- 1) Stratovolcano
- 2) Shield Volcano
- 3) Scoria / Cinder Cone
- 4) Continental Caldera
- 5) Flood Basalt
- 6) Lava Dome

Stratovolcano (Composite Cone)

Volume: Large

Viscosity: High

Volatiles: High

Explosivity: High

Composition: Andesite

Andesite (intermediate)

13

Beginning of development of composite cone Lava flow

Stratovolcano (Composite Cone)

Stratovolcano Eruption (Plinian)

Pinatubo, Philippines (1991)

Sarychev, Russia (2009)

Crater Lake, Oregon

After H. Williams, 1951

- 1) Stratovolcano
- 2) Shield Volcano
- 3) Scoria / Cinder Cone
- 4) Continental Caldera
- 5) Flood Basalt
- 6) Lava Dome

Shield Volcano Eruption (effusive)

Shield Volcano

Volume: Very Large

Viscosity: Low

Volatiles: Low

Explosivity: Low

Composition: Basalt

Volcano Size/Volume Comparison

Don't Mess with Pele' "Goddess of the Volcano"

- 1) Stratovolcano
- 2) Shield Volcano
- 3) Scoria / Cinder Cone
- 4) Continental Caldera
- 5) Flood Basalt
- 6) Lava Dome

Eruption of a Scoria/Cinder cone

Paracutin, Mexico

Volume: Low

Viscosity: Low

Volatiles: Medium

Explosivity: Low-medium

Composition: Basalt

- 1) Stratovolcano
- 2) Shield Volcano
- 3) Scoria / Cinder Cone
- 4) Continental Caldera
- 5) Flood Basalt
- 6) Lava Dome

Continental Caldera

Volume: Very High

Viscosity: High

Volatiles: High

Explosivity: Very High Composition: Rhyolite

Copyright © 2007 Pearson Prentice Hall, Inc.

Continental Caldera

Yellowstone

-Yellowstone Caldera-

Continental CalderaLong Valley Caldera, CA

Eruption of a Continental Caldera

- 1) Stratovolcano
- 2) Shield Volcano
- 3) Scoria / Cinder Cone
- 4) Continental Caldera
- 5) Flood Basalt
- 6) Lava Dome

Volume: Very Large Viscosity: Low Volatiles: Low

Explosivity: Low

Composition: Basalt

Flood Basalt

Columbia River Basalt (17.5 - 17.6 Ma)

Relationship between Flood Basalts and Mass Extinctions

Flood Basalt

Deccan Traps India (65 Ma) 512,000 km³

- 1) Stratovolcano
- 2) Shield Volcano
- 3) Scoria / Cinder Cone
- 4) Continental Caldera
- 5) Flood Basalt
- 6) Lava Dome

Lava Dome

Novarupta Alaska

Volume: Low-Medium Viscosity: High Volatiles: Low

Explosivity: Low

Composition: Rhyolite

Pumice and Volcanic Glass

Pumice

Obsidian Glass

Lava Dome

Following the 1980 Eruption of Mount St. Helens the vent has become plugged by a growing lava dome

Episodic growth of a Lava Dome

Following the 1980 Eruption of Mount St. Helens the vent has become plugged by a growing lava dome

Episodic growth of a **Lava Dome**

Following the 1980 Eruption of Mount St. Helens the vent has become plugged by a growing lava dome

Anatomy of a Plinian Eruption (Stratovolcano)

Hazards associated with the 1980 Eruption of Mt St. Helens, Washington

Mt. Saint Helens

Before

After

Mt. Saint Helens

Mt. Saint Helens

After

Time 1 (a)

Mt. St. Helens 1980 Eruption

Bulge on the North flank

Bulge on the North flank

Magnitude 5 Earthquake triggers the largest recorded landslide.

Removal of overburden, decompresses the magma below initiating a lateral blast from the north flank

Expanding gasses blast from the flank a of the volcano at speeds >300 mph

Johnston Ridge is enveloped in overrun by landslide debris as hot gasses climb skyward

Eruption column rises to 80,000 ft in 15 minutes

David Johnston

View from Johnston Ridge

"Vancouver! Vancouver! This is it! Vancouver! Vancouver! Is the transmitter still working?" Dave Johnston

Photograph from Johnston Ridge

The Landslide

Lateral Blast Shockwave Damage

Lahar - Hot Mud flow

54

Lahar - Hot Mud flow

High Density Flow

What goes up....

Chiatin Volcano (2008), Chile

Mt. St Helens Ash Fallout

Wind

Cold gentle fall-out

Ash Fall Tuff

Mt. Pinatubo (1991) Luzon, Philippine Islands

Pyroclastic Flows

Hot violent flow

Sarychev (2009)

St. Helens (1980)

Pyroclastic Flow and Surge

Flows are high density composed of ash, pumice, and rock fragments.

Surges are low density compose of hot gas and ash.

Pyroclastic Flow and Surge

Pyroclastic Flow and Surge

Pyroclastic Flow and Surge

Flows are high density composed of ash, pumice, and rock fragments.

Surges are low density compose of hot gas and ash.

Resurgent Dome (rebirth)

2005

1984

"The Plug"

2005

63

Dome Collapse

Mount Unzen 1991

Pyroclastic Flow or Block and Ash Flow

Pyroclastic Flow or Block and Ash Flow

