

Igneous Rocks and Processes

Tierra del Fuego, South America

Does the mineral in the <u>middle</u> have a cleavage?

- a) yes
- b) no

c) don't understand cleavage and couldn't tell even if I had the sample.

Does the mineral in the <u>middle</u> have a cleavage?

- a) yes
- b) no

c) don't understand cleavage and couldn't tell even if I had the sample.

How many directions of cleavage can

you see?

- a) One
- b) Two
- c) Three
- d) Four

How many directions of cleavage can

you see?

- a) One
- b) Two
- c) Three
- d) Four

What is the orientation of the cleavage planes with respect to each

other?

- a) Right angles
- b) 60 degrees
- c) Between 90 and 60 degrees.

What is the orientation of the cleavage planes with respect to each

other?

- a) Right angles
- b) 60 degrees
- c) Between 90 and 60 degrees.

- a) Quartz
- b) Calcite
- c) Gypsum
- d) Halite (salt)

- a) Quartz
- b) Calcite
- c) Gypsum
- d) Halite (salt)

- a) Quartz
- b) Calcite
- c) Gypsum
- d) Halite (salt)

- a) Quartz
- b) Calcite
- c) Gypsum
- d) Halite (salt)

Use Cleavage to determine what Mineral this is?

- a) Quartz
- b) Calcite
- c) Gypsum
- d) Halite (salt)

Use Cleavage to determine what Mineral this is?

- a) Quartz
- b) Calcite
- c) Gypsum
- d) Halite (salt)

Igneous Rocks

Igneous Rocks

Form from solidification of lava or magma

Ophiolite Suite

Ophiolite Suite

How does the composition of these rocks compare?

How does the composition of these rocks compare?

How does the composition of these rocks compare?

Why are some minerals small and some minerals large?

Why are some minerals small and some minerals large?

Temperature
Pressure
Composition (including H2O)
Time

Time 1

melt
melt
melt
melt
melt

What would the rock look like if we rapidly cooled it at Time 1? What would the rock look like if we rapidly cooled it at Time 2?

What would the rock look like if we rapidly cooled it at Time 1? What would the rock look like if we rapidly cooled it at Time 2?

What would the rock look like if we rapidly cooled it at Time 1? What would the rock look like if we rapidly cooled it at Time 2? What would the rock look like if we rapidly cooled it at Time 3?

What would the rock look like if we rapidly cooled it at Time 1? What would the rock look like if we rapidly cooled it at Time 2? What would the rock look like if we rapidly cooled it at Time 3?

Time 1

What would the rock look like if we rapidly cooled it at Time 1? What would the rock look like if we rapidly cooled it at Time 2?

What would the rock look like if we rapidly cooled it at Time 1? What would the rock look like if we rapidly cooled it at Time 2?

What would the rock look like if we rapidly cooled it at Time 1? What would the rock look like if we rapidly cooled it at Time 2? What would the rock look like if we rapidly cooled it at Time 3?

What would the rock look like if we rapidly cooled it at Time 1? What would the rock look like if we rapidly cooled it at Time 2? What would the rock look like if we rapidly cooled it at Time 3?

Igneous rock textures through a Microscope

Igneous rock textures in hand sample

Igneous Rocks

Extrusive Igneous Rock
A rock that solidifies
from a melt at the
Earths Surface.
--Referred to as

Intrusive Igneous Rock
A rock that solidifies
beneath the Earths
surface.

--Referred to as a plutonic rock.

volcanic rock.

Divergent Plate Boundaries

Divergent Plate Boundaries

Decompression Melting

Hot Spots

Hot Spots

Addition of Heat

Subduction zones

Subduction zones

Addition of Volatiles (water)

Temperature ——

Temperature ——

Temperature ——

Temperature ——

Temperature ——

Temperature ——

Ultramafic Mantle Peridotite (<40% silica)

Ultramafic Mantle Peridotite (<40% silica)

Ultramafic Mantle Peridotite (<40% silica)

< 10% asthenospheric melting occurs at plate Partial melting boundaries Thrust faults and folds trench erriding Continental crus ntinental osphere Oceanic crust intrusions Subducting Lithospheric mantle oceanic Melting of hydrated lithosphere asthenosphere metamorphic reactions Asthenospheric mantle

The Magma Produced is Mafic in Composition (Basaltic) and contains
45-55% silica

No Crystals

Partial melting

< 10% asthenospheric melting occurs at plate boundaries

Thrust faults and folds

Volcanic arc

Deep-sea >trench

What is the Most Common volcanic Igneous rock found on Earth?

Ultramafic Mantle Peridotite (<40% silica)

The Magma Produced is Mafic in Composition (Basaltic) and contains 45-55% silica

No Crystals

If you were to take 3 apples from this bowl of fruit and put them into a second bowl,

- A) the concentration of oranges would be increased in the initial bowl.
- B) you would have one bowl that is concentrated in apples and one bowl that is less concentrated in apples.
- C) you will have created two different bowls of fruit with unique ratios of apples to oranges that are both different in apple concentration from each other as well as different from the bowl you began with.
- D) All of the above.
- E) Only A and B are correct

If you were to take <u>3 apples</u> from this bowl of fruit and put them into a second bowl,

A) the concentration of oranges would be increased in the initial bowl.

What do we call the process by which we take a homogenous substance and change into compositionally unique parts?

apples to oranges that are both different in apple concentration from each other as well as different from the bowl you began with.

- D) All of the above
- E) Only A and B are correct

Bowen's Reaction Series

Norman L. Bowen (1887 - 1957)

Bowen's experimental Igneous Rock Factory

"The Evolution of Igneous Rocks" (1928)

Magma Differentiation by Fractional Crystallization

Magma Chamber

Increasing Silica

Temp. ¡Comp.

Ultra-Mafic Partial melt of
Asthenospheric Mantle
Peridotite

No Crystals

900

1300

Magma Differentiation by Fractional Crystallization

Magma Chamber

Increasing Silica

Lower temperature Decreasing temperature Time Partial Melt of asthenospheric Mantle Increasing silica in remaining melt

Temp. ¡Comp.

Ultra-Mafic Partial melt of
Asthenospheric Mantle
Peridotite

No Crystals

Mafic

900

1300

600

(b)

Olivine

▶ Pyroxene

Magma Differentiation by **Fractional Crystallization**

Magma Chamber

Increasing Silica

Temp. ¡Comp.

Ultra-Mafic

Partial melt of Asthenospheric Mantle Peridotite

No Crystals

Mafic

1300

900

Interm.

Andesite Hornblende, Biotit Plagioclase

Fractional Crystallization

MIT Experimental Petrology Lab

Experimental Setup

- 760 1200°C
- depths of 96-120 km
- 3 days 2 weeks

