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Which of the following diagrams most closely depicts the distance between
Earth and the Moon?
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Some Basic Physics and
Chemistry and Geology
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Equilibrium
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Phase Change
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Temperature (heat) and Pressure
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Temperature is a measure of Heat

Cylinder with large surface area

Accretionary heat
(energy transfer)

Sources of Earth’s Heat
Accretionary heating (original heat)  py
Latent heat (heat of crystallization)
Radioactive Decay

L]

7

Thursday, August 22, 13



Heat Transfer (cooling)

Conduction of heat involves the passage of
thermal energy from atom to neighboring atom.
Thus, the atoms in the hot part of the nail, which
is directly in the flame, vibrate very rapidly.
Farther from the heat source, the atoms vibrate
less rapidly. And at the end of the nail, which is
still cool, the atoms vibrate very slightly.
Eventually the heat will be conducted
throughout the length of the nail.

—

(a) Conduction

Convection involves the movement of heat
from place to place by a flowing medium.
Because the soup at the bottom of the pot is
closer to the flame, it is the first part of the
soup to become hot. As it heats up, it expands
(becoming less dense) and rises, and the
cooler (more dense) soup above it sinks to the
bottom, displacing it and forcing it upward.
When the warm soup arrives at the top, it
encounters the relative coolness of the air and
contracts in volume (becomes more dense) as
it begins to cool. The cooled soup then sinks
back toward the bottom, to be reheated and
then to rise again.

(b) Convection

Copyright © 2007 Pearson Prentice Hall, Inc.

Radiation involves the transfer of heat
from a hot object to its cooler
surroundings. The hot radiator heats up
the cool air that surrounds it.

Cool air

Hot radiator

(c) Radiation
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Buoyancy

Gravitational Equilibrium

Density = mass/volume (g/cm’)
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Buoyancy

Density = mass/volume (g/cm’)
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Buoyancy

Brass
on
Mercury

Gravitational Equilibrium

Density = mass/volume (g/cm’)
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Buoyancy

Brass
on
Mercury

Density = mass/volume (g/cm’)
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Observable Matter
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Observable Matter
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Silicate Rocks- Rocks composed dominantly
of Silicon (51) and Oxygen (O)
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Observable Matter
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Observable Matter

9
Earth’s [ o Felsic rocks,:
Composition | |, e e
3 3 5 A 10
by Mass [ [« N of Eliments s
il dllC TOCKS L L
° IINQIMallue «wve vE VB VIB Vil e 158 |Al Al
o 19 0 [21 |22 [23 [24 |25 27 |28 [29 [30 |21 36
356 Fe 4 K |C™NSc|Ti | ¥ |Cr MnjFe [CoO|Ni |CulZn GalGe AS | Se | Br | Kr
300/ O i N a1 |42 |43 |44 |45 |46 |47 48 42 (50 (51 [52 [52 [5
- (o) SIBb |Sr| Y | Zr Ru|Bh|Pd|Ag|Cd|In |Sn|Sb|Te Xe
o . 55 |56 |57 |72 |72 [7d |7 |76 = 83 [2d4 |[s5 |26
- I 5 A S| ElCs|Ba|*La|Hf |Ta | W |Re|Os| Ir | Pt |Au| Hg| TI | Pb| Bi | Po| At | iin
a7 |38 |29 |04 [105 [106 [107 |10 [109 [110
_ | 2% Mg 7| Fr | Ra |+Ac

o
-8/0 a” Other * Lanthanide] 58 59 |60 61 62 63 64 65 66 67 it by 70 71

Series Ce | Pr | Nd Sm|Eu|Gd| Tb|Dy |Ho| Er |[Tm|Yb | Lu

+ Actinide |90 |91 |92 |93 |94 |95 |96 a7 |98 |9a |00 |101 |10z |03
Series Th |Pa | U

Silicate Rocks- Rocks composed dominantly
of Silicon (51) and Oxygen (O)

Thursday, August 22, 13



The Rock Cycle

Sediment

Weathering,
transport, anV Cementation
deposition and compaction

Weathering,
transport,
and deposition

Sedimentary

Heat and pressure

Cooling and
solidification (metamorphism)
(crystallization)

Heat and pressure
/ (metamorphism)

Magma Metamorphic

(molten rock)

Melting
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Observable Matter

Earth’s
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Non-Silicate Rock (Ni-Fe alloy) —————————— Core
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Earth’s Composition
Heterogeneous or Homogeneous!?

Oxygen

309% Oxygen

46%

Silicon

+)
Iron 35% ghs

Other <1% \
Aluminum 1%
Calcium 1.1%
Sulfur 2%
Nickel 2.4%
Other 3.2%
Magnesium Potaé:sium 2.3
alcium 2.5% Aluminum
= -
13% Silicon Magnesium 4% Iron 8%
15% 6%

Whole Earth Crust
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Earth’s Composition
Heterogeneous or Homogeneous!?

Oxygen

30% Oi)égoen
Silicon
O
Iron 35% 28%
Other <1% \
Aluminum 1%
Calcium 1.1%
Sulfur 2%
Nickel 2.4%
Other 3.2%
Magnesium Potassium 2.3
Calcium 2.5% ATGrl
’ : uminum
b Silicon MagneS|um 4% Iron 8%
15% 6%
Whole Earth Crust

What is the crust enriched in?
What is the curst depleted in?

Thursday, August 22, 13



Modified gasat  Mafic  Dpensity: 30 g/em? 7 kv'sec
Diorite . Density: 2.7 g/cm® 6-7 km/sec
€6 G I t Felsic
a G I a n C e » Ultramafic silicate rocks Density: 3.3 gm/cm? 8 km/sec
(e.q., peridotite)
Key mineral - olivine
I I o I Ultramafic silicate rocks Partially melted: 1-10% 7 km/sec
(e.g., peridotite) liquid
Convective flow

Ultramafic silicate rocks Collapsed mineral structures 8-10 km/sec

(ca. 700 km) Ultramafic silicates (e.q.,
Lower Mantle spinel. gamet, Mg-oxides)
Lower Mantle Uttramafic silicates (Mg- Density: 5.5 g/cm® 13.6 kmvsec
and Fe-silicates, .g.,
perovskite)
Lower Mantle uiamaic oxides Mg-
gt/ (1A and Fe-oxides, e.g.,
sy P Plefen=P000=09884m= Ultramafic oxides Variations in topography and 8.1 km/sec
! LR and silicates temperature (due to sub-

ducted cool lithospheric slabs)

Partial melts (due to contact
with hot/liquid outer core
ULVZs (Ultra Low Velocity Zones)

Outer Core (5270 km)  Iron-nickel metal (perhaps  Density: 10-13 g/cm® 8.1 kmv'sec,
with small amounts of Liquid state (S-waves stop) increasing to
sulfur, silicon, oxygen) Source of Earth’s magnetic 10.4 km/sec

field

0 5370 Iron-nickel metal (perhaps  Solid (due to high pressure 11.2 km/sec
with small amounts of and insufficient temperature
sulfur, silicon, oxygen) to melt
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Buoyancy
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Isostasy

Time 1: A “load” is
placed on top of the
lithosphere.

Time 2: The weight of the load pushes
down. The lithosphere bends and

its base moves down. The plastic
asthenosphere flows out of the way.

Load

Lithosphere

(not to scale)
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Isostasy

ISOSTASY %°

- k Height
Block Rool B k Helg

= 40.0xm
= Block Density
’ p= 2.7

Liquid Density
p= 3.3

block height block density liquid density demo quallty

40.0..= 2.7+ 3.3%

www.globalchange.umich.edu.tiff
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What amount of the low density block is
sticking above the more dense material?

a) ~12 km
b) “33 km
c) 717 km
d) 77 km

e) Was unable to determine

20




What amount of the low density block is
sticking above the more dense material?

a) ~12 km
b) “33 km
c) 717 km
d)

e) Was unable to determine
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I S o Stasy a Mountain building

b Erosion and root rebound

¢ Slowed rebound due to increasing

Himalayan Mountains k!

22
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Earth’s Structure
Group Work

Pages 17, and 19-21 in your Manual
Work in Groups of 2 to 3




Earth’s Structure

Composition Layers

Crust

Mantle

Moho

Rheology (state) Layers
Lithosphere Depth

sthenosphere

Mesosphere
Rigid solid
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