Today:

- 1) Quiz: Metamorphism/Weathering and Sedimentary Rock Review
- 2) Metamorphism and Metamorphic Rocks
- 3) In-class exercise Metamorphic Rocks
- 4) Swiss Alps Movie (45 min)

Next Wednesday

6) Exam2

Metamorphism

Meta- Greek word, meaning Change.

Morph is from the Greek morphe meaning shape or form

ism- the action or result of

Metamorphic Rock- forms when preexisting rock (parent rock), or protolith undergoes solid state change in response to the modification of its environment.

The Rock Cycle

Causes of Metamorphism

Metamorphism due to heating (200 - 800 C)

Metamorphism due to increased Pressure

Metamorphism due to increase Heat and Pressure

Metamorphism due to Hydrothermal Fluids

Where Metamorphic Rocks Form

Copyright © 2007 Pearson Prentice Hall, Inc.

Where Metamorphic Rocks Form

Where Metamorphic Rocks Form

Where Metamorphic Rocks are Exposed

Least abundant rock at the Earths
Surface
Form at Temp
200-800 C and depths greater than
5km

Where Metamorphic Rocks are Exposed

Least abundant rock at the Earths
Surface
Form at Temp
200-800 C and depths greater than
5km

However, the continental curst is predominately composed of metamorphic rocks which underlie a thin veneer of sedimentary rocks

Where Metamorphic Rocks are Exposed

Least abundant rock at the Earths
Surface
Form at Temp
200-800 C and depths greater than
5km

However, the continental curst is predominately composed of metamorphic rocks which underlie a thin veneer of sedimentary rocks

Foliated(layered)

and

Non-Foliated

Foliated(layered)

and

Non-Foliated

What are the three main factors controlling the type of Metamorphic Rock that develops?

Foliated(layered)

and

Non-Foliated

What are the three main factors controlling the type of Metamorphic Rock that develops?

Temperature Pressure Composition and Presence of Water

Proto- means first in time; original.

<u>lith</u> is the Greek word for stone

<u>Protolith</u> refers to the original rock before metamorphism it could be an igneous, sedimentary, or another metamorphic

rock.

Proto- means first in time; original.

<u>lith</u> is the Greek word for stone

<u>Protolith</u> refers to the original rock before metamorphism it could be an igneous, sedimentary, or another metamorphic

rock.

Igneous- Pretty Good Diet Granola BAR

Proto- means first in time; original.

<u>lith</u> is the Greek word for stone

<u>Protolith</u> refers to the original rock before metamorphism it could be an igneous, sedimentary, or another metamorphic

rock.

Igneous- Pretty Good Diet Granola BAR

Sedimentary- Conglomerate, Sandstone, mud/claystone, limestone

Proto- means first in time; original.

lith is the Greek word for stone

<u>Protolith</u> refers to the original rock before metamorphism it could be an igneous, sedimentary, or another metamorphic

rock.

Igneous- Pretty Good Diet Granola BAR

Sedimentary- Conglomerate, Sandstone, mud/claystone, limestone

Metamorphic

General mineral grade stability
Low High¤
Kaolinite(clay)
Biotite
Pyroxene

Igneous- Pretty Good Diet Granola BAR

Sedimentary- Conglomerate, Sandstone, mud/claystone, limestone

General mineral grade stability	
Low High¤	8
Kaolinite(clay)	
Plagioclase Feldspar	
Quartz	1
	11
Hornblende	
Pyroxene	1

General mineral grade stability	20
Low Medium High¤	8
Kaolinite(clay)	- 5
Plagioclase Feldspar	
Quartz	1
	10
	30
Biotite	
Homblende	-
Pyroxene	

Igneous- Pretty Good Diet Granola BAR

Conoral minoral grade stability H
General mineral grade stability
Low Medium High¤
Kaolinite(clay)
Plagioclase Feldspar
Homblende
Pyroxene

Igneous- Pretty Good Diet Granola BAR

Sedimentary- Conglomerate, Sandstone, mud/claystone, limestone

Foliated(layered)

and

Non-Foliated

Foliated(layered)

and

Non-Foliated

Temperature Pressure Composition and Presence of Water

Non-Foliated Metamorphic Rocks

Non-Foliated Metamorphic Rocks

Protolith

Basalt

Meta Rx Greenstone

Epidote Actinolite Chlorite

High Grade

Medium-Grade

Plagioclase Feldspar

Eclogite

Very High Grade

Blue Schist

Pyroxene Garnet

General mineral grade stability	
Low High¤	8
Kaolinite(clay)	
Plagioclase Feldspar	
Quartz	1
	11
Hornblende	
Pyroxene	1

General mineral grade stability	20
Low Medium High¤	8
Kaolinite(clay)	- 5
Plagioclase Feldspar	
Quartz	1
	10
	30
Biotite	
Homblende	-
Pyroxene	

Igneous- Pretty Good Diet Granola BAR

Conoral minoral grade stability H
General mineral grade stability
Low Medium High¤
Kaolinite(clay)
Plagioclase Feldspar
Homblende
Pyroxene

Igneous- Pretty Good Diet Granola BAR

Sedimentary- Conglomerate, Sandstone, mud/claystone, limestone

Sedimentary

Parent/Protolith

Mudstone/shale

Medium

Phyllite

Degree of Metamorphism Increasing

Foliated Metamorphic Rocks

Schist

Mineral Differentiation

Gneiss

No Melting!

Low

Metamorphic Rock Stability Diagram

Does anything look familiar here?

Metamorphic Rock Stability Diagram

Melting Curves
Solidi for Granite and Basalt

Metamorphic Rock Stability Diagram

Causes of Metamorphism

Metamorphism due to heating (200-800 C)

Metamorphism due to increased Pressure

Metamorphism due to increase Heat and Pressure

Metamorphism to Hydrothermal Fluids

Increased Heat and Pressure

Increased Heat and Pressure

Burial by sedimentation - Burial by tectonics Hydrostatic stress

Deep Burial by accumulation of thick sequences of sedimentary rock

Deep Burial by accumulation of thick sequences of sedimentary rock

Dynamo-thermal Metamorphism

Present

Himalayan Mountains

Himalayan Metamorphic core

Himalayan Metamorphic core

+ Sub-Himalaya + Lower Himalaya + Higher Himalaya + Trans-Himalaya

Outer Central Miocene Ophiolite Indus -Cretaceous Crystalline Crystallines Granite Klippe Zangbo Batholiths in Klippe Suture Palaeoz sed. Tethyan

Sediments

70-80 km thick Crust

19. 9.9 Diagrammatic section across the central Himalaya. Symbols as for Fig. 9.8 (redrawn from Windley, 1983, in the lounal of the Geological Society of London, with permission of the Geological Society).

Convergent margin metamorphosed rock

At point A, temperature = 20°C, pressure = 1 bar

Before

(a) India

Asia

Upper crus

Lower crust

Himalayan Metamorphic core

Melting curve for wet basalt

Where Metamorphic Rocks Form

Indian continent Asia

Indian continent

Pz-Mz-of Indian Platform

Indian Sheed

Asia

Detachment Fault

Pz-Mz-of Indian Sheed

Bonnet et al. (2007) video

Where Metamorphic Rocks Form

Indian continent

After

(b)

Essentials of Geology, 2nd Edition
Copyright (c) W.W. Norton & Company

Indian continent

Pz-Mz-of Jaidian Platforno

Indian Sheed

Asia

Detachment Fault

Pz-Mz-of Jaidian Platforno

Indian Sheed

Asia

Bonnet et al. (2007) video

Metamorphic Mineral Stability Diagram

Earth's Temperature Profile is Variable

Earth's Temperature Profile is Variable

Metamorphic Mineral Phase Diagram

Causes of Metamorphism

Metamorphism due to heating (200-800 C)

Metamorphism due to increased Pressure

Metamorphism due to increase Heat and Pressure

Metamorphism to Hydrothermal Fluids

Thermal or Contact Metamorphism

Contact metamorphism typically produces a fine-grained metamorphic rock

Metamorphic Rock Stability Diagram

What kind of metamorphic Rock might you expect from Contact metamorphism?

Metamorphic Rock Stability Diagram

What kind of metamorphic Rock might you expect from Contact metamorphism?

Thermal or Contact Metamorphism

When hydrothermal fluids are present

Causes of Metamorphism

Metamorphism due to heating (200-800 C)

Metamorphism due to increased Pressure

Metamorphism due to increase Heat and Pressure

Metamorphism to Hydrothermal Fluids

Hydrothermal Alteration

Hydrothermal **Alteration**

Serpentinite

Hot water rises,

Essentials of Geology, 2nd Edition Copyright (c) W.W. Norton & Company

12% H2O by mass

Olivine + Water + Carbonic acid → Serpentine + Magnetite + Methane

$$\begin{array}{ccc} (\mathrm{Fe},\mathrm{Mg})_2\mathrm{SiO}_4 + \mathrm{nH}_2\mathrm{O} + \mathrm{CO}_2 \to \mathrm{Mg}_3\mathrm{Si}_2\mathrm{O}_5(\mathrm{OH})_4 + \mathrm{Fe}_3\mathrm{O}_4 + \mathrm{CH}_4 \\ \text{olivine} & \text{Serpentine} & \text{Magnetite} \end{array}$$

Black Smokers

Hydrothermal Alteration

FIGURE 6.20

Olivine + Water + Carbonic acid → Serpentine + Magnetite + Methane

 $(Fe, Mg)_2SiO_4 + nH_2O + CO_2 \rightarrow Mg_3Si_2O_5(OH)_4 + Fe_3O_4 + CH_4$

olivine

Serpentine

Magnetite

42

Causes of Metamorphism

Metamorphism due to heating (200-800 C)

Metamorphism due to increased Pressure

Metamorphism due to increase Heat and Pressure

Metamorphism to Hydrothermal Fluids

Differential Stress and Development of Preferred Mineral Orientation <u>Directed Pressure</u>

Before compression

After compression

(b) Directed Pressure

Copyright © 2007 Pearson Prentice Hall, Inc.

JURE 6.4

Tectonic Fabric

Tectonite

Axial Planar Cleavage

Other cool rocks that have something to say!

Tectonites

Today:

- 1) Case Study: Contact Metamorphism
- 2) Metamorphic Rx Identification (9:50)
- 3) Movie: The Alps (10:10)

Next Class:

4) Exam2

-Minerals, Igneous Rx, Volcanoes, Weathering, Sedimentary Rx, Metamorphic Rx

Case Study: Contact Metamorphism Sierra Nevada of California

Sierra Nevada of California

Sierra Nevada of California

Sierra Nevada of California

